Residual analysis for linear mixed models.

نویسندگان

  • Juvêncio Santos Nobre
  • Julio da Motta Singer
چکیده

Residuals are frequently used to evaluate the validity of the assumptions of statistical models and may also be employed as tools for model selection. For standard (normal) linear models, for example, residuals are used to verify homoscedasticity, linearity of effects, presence of outliers, normality and independence of the errors. Similar uses may be envisaged for three types of residuals that emerge from the fitting of linear mixed models. We review some of the residual analysis techniques that have been used in this context and propose a standardization of the conditional residual useful to identify outlying observations and clusters. We illustrate the procedures with a practical example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Stochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models

In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2007